An elementary proof of a theorem of Johnson and Lindenstrauss
نویسندگان
چکیده
A result of Johnson and Lindenstrauss [13] shows that a set of n points in high dimensional Euclidean space can be mapped into an O(log n/ )-dimensional Euclidean space such that the distance between any two points changes by only a factor of (1 ). In this note, we prove this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 22: 60–65, 2002
منابع مشابه
An Elementary Proof of the Johnson-lindenstrauss Lemma
The Johnson-Lindenstrauss lemma shows that a set of n points in high dimensional Euclidean space can be mapped down into an O(log n== 2) dimensional Euclidean space such that the distance between any two points changes by only a factor of (1). In this note, we prove this lemma using elementary probabilistic techniques.
متن کامل236779: Foundations of Algorithms for Massive Datasets Lecture 4 the Johnson-lindenstrauss Lemma
The Johnson-Lindenstrauss lemma and its proof This lecture aims to prove the Johnson–Lindenstrauss lemma. Since the lemma is proved easily with another interesting lemma, a part of this lecture is focused on the proof of this second lemma. At the end, the optimality of the Johnson–Lindenstrauss lemma is discussed. Lemma 1 (Johnson-Lindenstrauss). Given the initial space X ⊆ R n s.t. |X| = N , <...
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملThe Johnson-Lindenstrauss Lemma Meets Compressed Sensing
We show how two fundamental results in analysis related to n-widths and Compressed Sensing are intimately related to the Johnson-Lindenstrauss lemma. Our elementary approach is based on the same concentration inequalities for random inner products that have recently provided simple proofs of the Johnson-Lindenstrauss lemma. We show how these ideas lead to simple proofs of Kashin’s theorems on w...
متن کاملSome Applications of Ball’s Extension Theorem
We present two applications Ball’s extension theorem. First we observe that Ball’s extension theorem, together with the recent solution of Ball’s Markov type 2 problem due to Naor, Peres, Schramm and Sheffilield, imply a generalization, and an alternative proof of, the Johnson-Lindenstrauss extension theorem. Secondly, we prove that the distortion required to embed the integer lattice {0, 1, . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 22 شماره
صفحات -
تاریخ انتشار 2003